Fagoterapia: una alternativa emergente en la era de la multirresistencia antibiótica

  • Leda Guzzi
Palabras clave: fagoterapia, bacteriófagos, fagos, infecciones difíciles de tratar, resistencia antimicrobiana

Resumen

La creciente resistencia antimicrobiana asociada a la crisis en la producción de nuevos antibióticos y las consecuencias humanas y económicas de este fenómeno, constituyen un complejo escenario que requiere el urgente desarrollo de estrategias antimicrobianas alternativas. Los bacteriófagos son virus que infectan y lisan bacterias. Se conocen desde hace más de un siglo pero en las últimas dos décadas, la administración de bacteriofagos ha ganado popularidad en todo el mundo. Existe un extenso cuerpo de evidencia preclínica y clínica que posiciona a la fagoterapia como una de las principales herramientas para el tratamiento de infecciones difíciles de tratar. Si bien esto es conceptualmente promisorio, su implementación está limitada por la escasez de datos clínicos de seguridad y eficacia, obtenidos acorde a los estándares científicos actuales. Esta revisión describe los datos más relevantes acerca de la biología de los fagos, los aspectos farmacocinéticos y farmacodinámicos conocidos hasta la actualidad, los temas regulatorios y los resultados clínicos más relevantes.

Descargas

La descarga de datos todavía no está disponible.

Citas

1) Fleming A. Sir Alexander Fleming—Nobel Lecture. Penicillin. (accessed on 18 Feb 2023). Available online: https://www.nobelprize.org/uploads/2018/06/fleming-lecture.pdf

2) World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf

3) OPS Alerta Epidemiológica: Emergencia e incremento de nuevas combinaciones de carbapenemasas en Enterobacterales en Latinoamérica y el Caribe - 22 Octubre 2021. https://www.paho.org/es/documentos/alerta-epidemiologica-emergencia-e-incremento-nuevas-combinaciones-carbapenemasas

4) OMS Plan de acción mundial sobre la resistencia a los antimicrobianos 1 de enero de 2016 https://www.who.int/es/publications/i/item/9789241509763

5) Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022 Feb 12;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0. Epub 2022 Jan 19. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext

6) Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. 2016 Release. (accessed on 18 February 2023); Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf

7) Kwon JH, Powderly WG. The post-antibiotic era is here. Science. 2021 Jul 30;373(6554):471. doi: 10.1126/science.abl5997. PMID: 34326211. https://www.science.org/doi/10.1126/science.abl5997?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

8) United Nations Draft Political Declaration of the High-Level Meeting of the General Assembly on Antimicrobial Resistance (16-16108 (E)). 2016 Release. (accessed on 17 December 2017); Available online: http://www.un.org/pga/71/wp-content/uploads/sites/40/2016/09/DGACM_GAEAD_ESCAB-AMR-Draft-Political-Declaration-1616108E.pdf

9) Thiel K. Old dogma, new tricks--21st Century phage therapy. Nat Biotechnol. 2004 Jan;22(1):31-6. doi: 10.1038/nbt0104-31. PMID: 14704699. https://pubmed.ncbi.nlm.nih.gov/14704699/

10) Skurnik M. Can Bacteriophages Replace Antibiotics? Antibiotics (Basel). 2022 Apr 26;11(5):575. doi: 10.3390/antibiotics11050575. PMID: 35625219; PMCID: PMC9137811. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137811/

11) Twort F.W. An investigation on the nature of ultra-microscopic viruses. Lancet. 1915;189:1241–1243. doi: 10.1016/S0140-6736(01)20383-3. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(01)20383-3/fulltext

12 Sejas Guzman CP. Fagoterapia: Tratamiento alternativo para el Control de las Infecciones Bacterianas en Pacientes Quemados. Volumen 31 - nº 2 2021 - Revista Argentina De Quemaduras. (acceso 18 Feb 2023). Disponible en: http://raq.fundacionbenaim.org.ar/vol-32-oct-2021/RAQ-32-OCT-2021-FAGOTERAPIA.pdf

13 Reina J, Reina N. Fagoterapia ¿una alternativa a la antibioticoterapia?. Rev Esp Quimioter. 2018 Apr;31(2):101-104. Spanish. Epub 2018 Feb 16. PMID: 29451376; PMCID: PMC6159377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159377/

14 Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014 Jan 1;5(1):226-35. doi: 10.4161/viru.25991. Epub 2013 Aug 13. PMID: 23973944; PMCID: PMC3916379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916379/

15 Abedon ST, García P, Mullany P, et al. Editorial: Phage Therapy: Past, Present and Future. Front Microbiol. 2017 Jun 15;8:981. doi: 10.3389/fmicb.2017.00981. PMID: 28663740; PMCID: PMC5471325. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471325/

16 George Eliava Institute of Bacteriophages, Microbiology and Virology. (accessed on 18 Feb 2023). Available online: https://eliava-institute.org/?lang=en

17 MicroGen National Manufacturer of Immunobiological Products in Russia. (accessed on 18 Feb 2023). Available online: https://www.microgen.ru/en/company/

18 Luong T, Salabarria AC, Roach DR. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther. 2020 Sep;42(9):1659-1680. doi: 10.1016/j.clinthera.2020.07.014. Epub 2020 Aug 31. PMID: 32883528.
https://www.clinicaltherapeutics.com/article/S0149-2918%2820%2930348-9/fulltext#bib12

19 Pirnay JP, Verbeken G, Ceyssens PJ, et al. The Magistral Phage. Viruses. 2018 Feb 6;10(2):64. doi: 10.3390/v10020064. PMID: 29415431; PMCID: PMC5850371. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850371/

20 Mushegian AR. Are There 1031 Virus Particles on Earth, or More, or Fewer? J Bacteriol. 2020 Apr 9;202(9):e00052-20. doi: 10.1128/JB.00052-20. PMID: 32071093; PMCID: PMC7148134. https://pubmed.ncbi.nlm.nih.gov/32071093/

21 Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol. 2007 Oct;5(10):801-12. doi: 10.1038/nrmicro1750. PMID: 17853907. https://www.nature.com/articles/nrmicro1750

22 Ackermann HW, Prangishvili D. Prokaryote viruses studied by electron microscopy. Arch Virol. 2012 Oct;157(10):1843-9. doi: 10.1007/s00705-012-1383-y. Epub 2012 Jul 3. PMID: 22752841. https://doi.org/10.1007/s00705-012-1383-y

23 Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015 Jun 23;5(3):e1062590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590002/

24 Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017 Jul;11(7):1511-1520. doi: 10.1038/ismej.2017.16. Epub 2017 Mar 14. PMID: 28291233; PMCID: PMC5520141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520141/

25 Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173. doi: 10.4292/wjgpt.v8.i3.162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547374/

26 Monteiro R, Pires DP, Costa AR, Azeredo J. Phage Therapy: Going Temperate? Trends Microbiol. 2019 Apr;27(4):368-378. doi: 10.1016/j.tim.2018.10.008. Epub 2018 Nov 19. PMID: 30466900. https://www.cell.com/trends/microbiology/fulltext/S0966-842X(18)30231-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0966842X18302312%3Fshowall%3Dtrue

27 Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019 May;25(5):730-733. doi: 10.1038/s41591-019-0437-z. Epub 2019 May 8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557439/

28 Hargreaves KR, Clokie MR. Clostridium difficile phages: still difficult? Front Microbiol. 2014 Apr 28;5:184. doi: 10.3389/fmicb.2014.00184. PMID: 24808893; PMCID: PMC4009436. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009436/

29 Wiggins BA, Alexander M. Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol. 1985 Jan;49(1):19-23. doi: 10.1128/aem.49.1.19-23.1985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23833

30 Fillol-Salom A, Alsaadi A, Sousa JAM, et al. Bacteriophages benefit from generalized transduction. PLoS Pathog. 2019 Jul 5;15(7):e1007888. doi: 10.1371/journal.ppat.1007888. PMID: 31276485; PMCID: PMC6636781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636781/

31 Gupta R, Prasad Y. Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol. 2011 Jan;62(1):255-60. Epub 2010 Jul 7. PMID: 20607539. DOI: 10.1007/s00284-010-9699-x
32 Casey E., van Sinderen D. Mahony J. In vitro characteristics of phages to guide 'real life' phage therapy suitability. Viruses. 2018; 10: 163. https://www.mdpi.com/1999-4915/10/4/163

33 Hansen MF, Svenningsen SL, Røder HL, et al. Big Impact of the Tiny: Bacteriophage-Bacteria Interactions in Biofilms. Trends Microbiol. 2019 Sep;27(9):739-752. doi: 10.1016/j.tim.2019.04.006. Epub 2019 May 22. PMID: 31128928. https://www.cell.com/trends/microbiology/fulltext/S0966-842X(19)30099-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0966842X1930099X%3Fshowall%3Dtrue

34 Lin H, Paff ML, Molineux IJ, Bull JJ. Antibiotic Therapy Using Phage Depolymerases: Robustness Across a Range of Conditions. Viruses. 2018 Nov 12;10(11):622. doi: 10.3390/v10110622. PMID: 30424521; PMCID: PMC6266388. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6266388/

35 McNair K, Bailey BA, Edwards RA. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics. 2012 Mar 1;28(5):614-8. doi: 10.1093/bioinformatics/bts014. Epub 2012 Jan 11. PMID: 22238260; PMCID: PMC3289917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289917/

36 Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016 Mar;40(2):258-72. doi: 10.1093/femsre/fuv048. Epub 2015 Dec 9. PMID: 26657537; PMCID: PMC5831537. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831537/

37 McNair K, Aziz RK, Pusch GD, Overbeek R, Dutilh BE, Edwards R. Phage Genome Annotation Using the RAST Pipeline. Methods Mol Biol. 2018;1681:231-238. DOI: 10.1007/978-1-4939-7343-9_17. PMID: 29134599.
38 Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011 Mar;1(2):111-114. doi: 10.4161/bact.1.2.14590. PMID: 22334867; PMCID: PMC3278648. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278648/

39 Philipson C.W., Voegtly L.J., Lueder M.R. et al. Characterizing phage genomes for therapeutic applications. Viruses. 2018; 10: 188. https://www.mdpi.com/1999-4915/10/4/188

40 Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014 Aug;42(14):9504-13. doi: 10.1093/nar/gku628. Epub 2014 Jul 24. PMID: 25063295; PMCID: PMC4132740. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132740/

41 Bonilla N, Rojas MI, Netto Flores Cruz G, et al. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ. 2016 Jul 26;4:e2261. doi: 10.7717/peerj.2261. PMID: 27547567; PMCID: PMC4975003.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975003/

42 González-Menéndez E, Fernández L, Gutiérrez D, et al. Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS One. 2018 Oct 11;13(10):e0205728. doi: 10.1371/journal.pone.0205728. PMID: 30308048; PMCID: PMC6181408. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181408/

43 Leung SSY, Parumasivam T, Gao FG, et al. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int J Pharm. 2017 Apr 15;521(1-2):141-149. doi: 10.1016/j.ijpharm.2017.01.060. Epub 2017 Feb 3. PMID: 28163231; PMCID: PMC5389863. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389863/

44 Law N, Logan C, Yung G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection. 2019 Aug;47(4):665-668. DOI: 10.1007/s15010-019-01319-0. Epub 2019 May 17. PMID: 31102236.
45 Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017 Sep 22;61(10):e00954-17. doi: 10.1128/AAC.00954-17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610518/

46 Ross A, Ward S, Hyman P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front Microbiol. 2016 Sep 8;7:1352. doi: 10.3389/fmicb.2016.01352. PMID: 27660623; PMCID: PMC5014875. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014875/

47 Abedon ST, Thomas-Abedon C. Phage therapy pharmacology. Curr Pharm Biotechnol. 2010 Jan;11(1):28-47. DOI: 10.2174/138920110790725410. PMID: 20214606.
48 Fauconnier A. Phage therapy regulation: from night to dawn. Viruses. 2019; 11: 352. https://www.mdpi.com/1999-4915/11/4/352

49 Doub J.B., Ng V.Y., Johnson A.J. et al. Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection. Antibiotics. 2020; 9: 241. https://www.mdpi.com/2079-6382/9/5/241

50 Chan BK, Turner PE, Kim S, et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018 Mar 8;2018(1):60-66. doi: 10.1093/emph/eoy005. PMID: 29588855; PMCID: PMC5842392. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842392/

51 Gibson SB, Green SI, Liu CG, et al. Constructing and Characterizing Bacteriophage Libraries for Phage Therapy of Human Infections. Front Microbiol. 2019 Nov 12;10:2537. doi: 10.3389/fmicb.2019.02537. PMID: 31781060; PMCID: PMC6861333.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861333/

52 Law N, Logan C, Yung G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection. 2019 Aug;47(4):665-668. DOI: 10.1007/s15010-019-01319-0. Epub 2019 May 17. PMID: 31102236.
53 Cano EJ, Caflisch KM, Bollyky PL, et al. Phage Therapy for Limb-threatening Prosthetic Knee Klebsiella pneumoniae Infection: Case Report and In Vitro Characterization of Anti-biofilm Activity. Clin Infect Dis. 2021 Jul 1;73(1):e144-e151. doi: 10.1093/cid/ciaa705. PMID: 32699879; PMCID: PMC8246933. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246933/

54 Pirnay JP, De Vos D, Verbeken G, et al. The phage therapy paradigm: prêt-à-porter or sur-mesure? Pharm Res. 2011 Apr;28(4):934-7. DOI: 10.1007/s11095-010-0313-5. Epub 2010 Nov 10. PMID: 21063753.
55 Mattila S, Ruotsalainen P, Jalasvuori M. On-Demand Isolation of Bacteriophages Against Drug-Resistant Bacteria for Personalized Phage Therapy. Front Microbiol. 2015 Nov 13;6:1271. doi: 10.3389/fmicb.2015.01271. PMID: 26617601; PMCID: PMC4643220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643220/

56 Nilsson AS. Pharmacological limitations of phage therapy. Ups J Med Sci. 2019 Nov;124(4):218-227. doi: 10.1080/03009734.2019.1688433. Epub 2019 Nov 14. PMID: 31724901; PMCID: PMC6968538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968538/

57 Dąbrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev. 2019 Oct 30;83(4):e00012-19. doi: 10.1128/MMBR.00012-19. PMID: 31666296; PMCID: PMC6822990. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822990/

58 Łusiak-Szelachowska M, Zaczek M, Weber-Dąbrowska B, et al. A phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 2014 Aug;27(6):295-304. doi: 10.1089/vim.2013.0128. Epub 2014 Jun 3. PMID: 24893003; PMCID: PMC4076984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076984/

59 Bruttin A, Brüssow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 2005 Jul;49(7):2874-8. doi: 10.1128/AAC.49.7.2874-2878.2005. PMID: 15980363; PMCID: PMC1168693. https://pubmed.ncbi.nlm.nih.gov/15980363/

60 Monsur KA, Rahman MA, Huq F, Islam MN, et al. Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera. Bull World Health Organ. 1970;42(5):723-32. PMID: 4988693; PMCID: PMC2427496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427496/

61 Dufour N, Clermont O, La Combe B, et al. Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex. J Antimicrob Chemother. 2016 Nov;71(11):3072-3080. doi: 10.1093/jac/dkw253. Epub 2016 Jul 7. PMID: 27387322. https://hal.science/pasteur-01539016

62 Oechslin F, Piccardi P, Mancini S, et al. Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas aeruginosa Infection in Endocarditis and Reduces Virulence. J Infect Dis. 2017 Mar 1;215(5):703-712. doi: 10.1093/infdis/jiw632. PMID: 28007922; PMCID: PMC5388299. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388299/

63 3 LaVergne S, Hamilton T, Biswas B, et al. Phage Therapy for a Multidrug-Resistant Acinetobacter baumannii Craniectomy Site Infection. Open Forum Infect Dis. 2018 Mar 23;5(4):ofy064. doi: 10.1093/ofid/ofy064. PMID: 29687015; PMCID: PMC5905571.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905571/

64 Aviram I, Rabinovitch A. Dynamical types of bacteria and bacteriophages interaction: shielding by debris. J Theor Biol. 2008 Mar 7;251(1):121-36. doi: 10.1016/j.jtbi.2007.11.003. Epub 2007 Nov 13. PMID: 18160076. https://pubmed.ncbi.nlm.nih.gov/18160076/

65 Van Belleghem JD, Merabishvili M, Vergauwen B, et al. M. A comparative study of different strategies for removal of endotoxins from bacteriophage preparations. J Microbiol Methods. 2017 Jan;132:153-159. DOI: 10.1016/j.mimet.2016.11.020. Epub 2016 Nov 29. PMID: 27913133.
66 Dufour N, Delattre R, Ricard JD, et al. The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by β-Lactams. Clin Infect Dis. 2017 Jun 1;64(11):1582-1588. doi: 10.1093/cid/cix184. PMID: 28329379; PMCID: PMC5434335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434335/

67 Gogokhia L, Buhrke K, Bell R, et al. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe. 2019 Feb 13;25(2):285-299.e8. doi: 10.1016/j.chom.2019.01.008. PMID: 30763538; PMCID: PMC6885004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885004/

68 Shiley JR, Comfort KK, Robinson JB. Immunogenicity and antimicrobial effectiveness of Pseudomonas aeruginosa specific bacteriophage in a human lung in vitro model. Appl Microbiol Biotechnol. 2017 Nov;101(21):7977-7985. DOI: 10.1007/s00253-017-8504-1. Epub 2017 Sep 15. PMID: 28914348.
69 Freyberger H.R. He Y. Roth A.L. et al. Effects of Staphylococcus aureus bacteriophage k on expression of cytokines and activation markers by human dendritic cells in vitro. Viruses. 2018; 10: 617. https://www.mdpi.com/1999-4915/10/11/617

70 Majewska J, Beta W, Lecion D, et al. Oral Application of T4 Phage Induces Weak Antibody Production in the Gut and in the Blood. Viruses. 2015 Aug 20;7(8):4783-99. doi: 10.3390/v7082845. PMID: 26308042; PMCID: PMC4576206. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576206/

71 Majewska J, Kaźmierczak Z, Lahutta K, et al. Induction of Phage-Specific Antibodies by Two Therapeutic Staphylococcal Bacteriophages Administered per os. Front Immunol. 2019 Nov 14;10:2607. doi: 10.3389/fimmu.2019.02607. PMID: 31803179; PMCID: PMC6871536. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871536/

72 Abd El-Aziz AM, Elgaml A, Ali YM. Bacteriophage Therapy Increases Complement-Mediated Lysis of Bacteria and Enhances Bacterial Clearance After Acute Lung Infection With Multidrug-Resistant Pseudomonas aeruginosa. J Infect Dis. 2019 Apr 16;219(9):1439-1447. doi: 10.1093/infdis/jiy678. PMID: 30476337. https://academic.oup.com/jid/article/219/9/1439/5199417?login=false

73 Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, et al. Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Front Microbiol. 2016 Oct 24;7:1681. doi: 10.3389/fmicb.2016.01681. PMID: 27822205; PMCID: PMC5075762. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075762/

74 Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010 May;8(5):317-27. DOI: 10.1038/nrmicro2315. Epub 2010 Mar 29. PMID: 20348932.
75 Vale PF, Little TJ. CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci. 2010 Jul 22;277(1691):2097-103. doi: 10.1098/rspb.2010.0055. Epub 2010 Mar 17. PMID: 20236977; PMCID: PMC2880148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880148/

76 Cortez MH, Weitz JS. Coevolution can reverse predator-prey cycles. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7486-91. doi: 10.1073/pnas.1317693111. Epub 2014 May 5. PMID: 24799689; PMCID: PMC4034221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034221/

77 El Haddad L, Harb CP, Gebara MA, et al. A Systematic and Critical Review of Bacteriophage Therapy Against Multidrug-resistant ESKAPE Organisms in Humans. Clin Infect Dis. 2019 Jun 18;69(1):167-178. doi: 10.1093/cid/ciy947. PMID: 30395179. https://academic.oup.com/cid/article/69/1/167/5159998?login=false

78 Zhvania P, Hoyle NS, Nadareishvili L, et al. Phage Therapy in a 16-Year-Old Boy with Netherton Syndrome. Front Med (Lausanne). 2017 Jul 3;4:94. doi: 10.3389/fmed.2017.00094. PMID: 28717637; PMCID: PMC5494523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494523/

79 Roach DR, Leung CY, Henry M, et al. Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen. Cell Host Microbe. 2017 Jul 12;22(1):38-47.e4. doi: 10.1016/j.chom.2017.06.018. PMID: 28704651. https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(17)30258-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312817302585%3Fshowall%3Dtrue

80 Wright R.C.T., Friman V.P., Smith M.C.M. et al. Resistance evolution against phage combinations depends on the timing and order of exposure.
mBio. 2019; 10 (e01652-01619). 81 https://journals.asm.org/doi/10.1128/mBio.01652-19

81 Chhibber S, Bansal S, Kaur S. Disrupting the mixed-species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol. Microbiology (Reading). 2015 Jul;161(7):1369-77. doi: 10.1099/mic.0.000104. Epub 2015 Apr 28. PMID: 25922418. https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000104#tab2

82 Comeau AM, Tétart F, Trojet SN, et al. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One. 2007 Aug 29;2(8):e799. doi: 10.1371/journal.pone.0000799. PMID: 17726529; PMCID: PMC1949050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1949050/

83 Kamal F, Dennis JJ. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol. 2015 Feb;81(3):1132-8. doi: 10.1128/AEM.02850-14. Epub 2014 Dec 1. PMID: 25452284; PMCID: PMC4292504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292504/

84 Chan BK, Sistrom M, Wertz JE, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016 May 26;6:26717. doi: 10.1038/srep26717. PMID: 27225966; PMCID: PMC4880932. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880932/

85 Chatterjee A, Johnson CN, Luong P, et al. Bacteriophage Resistance Alters Antibiotic-Mediated Intestinal Expansion of Enterococci. Infect Immun. 2019 May 21;87(6):e00085-19. doi: 10.1128/IAI.00085-19. PMID: 30936157; PMCID: PMC6529655. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529655/

86 Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One. 2019 Jan 16;14(1):e0209390. doi: 10.1371/journal.pone.0209390. PMID: 30650088; PMCID: PMC6334939. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334939/

87 Knezevic P, Curcin S, Aleksic V, et al. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res Microbiol. 2013 Jan;164(1):55-60. DOI: 10.1016/j.resmic.2012.08.008. Epub 2012 Sep 7. PMID: 23000091.
88 Akturk E., Oliveira H. Santos S.B. et al. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics. 2019; 8: 103. https://www.mdpi.com/2079-6382/8/3/103.

89 Ferry T, Leboucher G, Fevre C, Lyon BJI Study Group. Salvage Debridement, Antibiotics and Implant Retention ("DAIR") With Local Injection of a Selected Cocktail of Bacteriophages: Is It an Option for an Elderly Patient With Relapsing Staphylococcus aureus Prosthetic-Joint Infection? Open Forum Infect Dis. 2018 Oct 24;5(11):ofy269. doi: 10.1093/ofid/ofy269. PMID: 30474047; PMCID: PMC6240628. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240628/

90 Tkhilaishvili T, Winkler T, Müller M, et al. Bacteriophages as Adjuvant to Antibiotics for the Treatment of Periprosthetic Joint Infection Caused by Multidrug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019 Dec 20;64(1):e00924-19. doi: 10.1128/AAC.00924-19. PMID: 31527029; PMCID: PMC7187616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187616/

91 Furfaro LL, Payne MS, Chang BJ. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front Cell Infect Microbiol. 2018 Oct 23;8:376. doi: 10.3389/fcimb.2018.00376. PMID: 30406049; PMCID: PMC6205996. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205996/

92 ANSM Agence nationale de sécurité du médicament et des produits de santé Comité scientifique spécialisé temporaire: phagothérapie. http://ansm.sante.fr/content/download/91159/1144681/version/1/file/CR_CSST_Phagotherapie_CSST201611013_24-03-2016.pdf2016

93 Pirnay JP, Ferry T, Resch G. Recent progress toward the implementation of phage therapy in Western medicine. FEMS Microbiol Rev. 2022 Jan 18;46(1):fuab040. doi: 10.1093/femsre/fuab040. PMID: 34289033. https://academic.oup.com/femsre/article/46/1/fuab040/6325169?login=false

94 NIH. U.S. National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=&term=bacteriophages&cntry=&state=&city=&dist=

95 Uyttebroek S, Chen B, Onsea J, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis. 2022 Aug;22(8):e208-e220. DOI: 10.1016/S1473-3099(21)00612-5. Epub 2022 Mar 3. PMID: 35248167.
96 Duplessis C, Stockelman MG, Hamilton T, et al. A case series of emergency investigational new drug applications for bacteriophages treating recalcitrant multi-drug resistant bacterial infections: confirmed safety and a signal of efficacy. J Intensivce Crit Care 2019; 5: 11. https://www.primescholars.com/articles/a-case-series-of-emergency-investigational-new-drug-applications-for-bacteriophages-treating-recalcitrant-multidrug-resi-96802.html

97 Tagliaferri TL, Jansen M, Horz HP. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front Cell Infect Microbiol. 2019 Feb 18;9:22. doi: 10.3389/fcimb.2019.00022. PMID: 30834237; PMCID: PMC6387922. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387922/

98 Aslam S, Lampley E, Wooten D, et al. Lessons Learned From the First 10 Consecutive Cases of Intravenous Bacteriophage Therapy to Treat Multidrug-Resistant Bacterial Infections at a Single Center in the United States. Open Forum Infect Dis. 2020 Aug 27;7(9):ofaa389. doi: 10.1093/ofid/ofaa389. PMID: 33005701; PMCID: PMC7519779. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519779/

99 Amorim JH, Del Cogliano ME, Fernandez-Brando RJ, Bilen MF, Jesus MR, Luiz WB, Palermo MS, Ferreira RC, Servat EG, Ghiringhelli PD, Ferreira LC, Bentancor LV. Role of bacteriophages in STEC infections: new implications for the design of prophylactic and treatment approaches. F1000Res. 2014 Mar 18;3:74. doi: 10.12688/f1000research.3718.2. PMID: 25580222; PMCID: PMC4288416. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288416/

100 Del Cogliano ME, Pinto A, Goldstein J, Zotta E, Ochoa F, Fernández-Brando RJ, Muniesa M, Ghiringhelli PD, Palermo MS, Bentancor LV. Relevance of Bacteriophage 933W in the Development of Hemolytic Uremic Syndrome (HUS). Front Microbiol. 2018 Dec 13;9:3104. doi: 10.3389/fmicb.2018.03104. PMID: 30619183; PMCID: PMC6300567. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300567/

101 Del Cogliano ME, Hollmann A, Martinez M, Semorile L, Ghiringhelli PD, Maffía PC, Bentancor LV. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages. Front Chem. 2017 Dec 19;5:122. doi: 10.3389/fchem.2017.00122. PMID: 29312928; PMCID: PMC5742231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742231/

102 Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms. 2018 Sep 28;6(4):100. doi: 10.3390/microorganisms6040100. PMID: 30274180; PMCID: PMC6313304. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313304/
Publicado
2023-07-24
Cómo citar
Guzzi, L. (2023). Fagoterapia: una alternativa emergente en la era de la multirresistencia antibiótica. Actualizaciones En Sida E Infectología, 31(112). https://doi.org/10.52226/revista.v31i112.123
Sección
Artículo de revisión